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1. Introduction

The technology of smart materials and structures represents an emerging multidisciplinary field
of study with applications ranging from mechatronic structures to automobiles and spacecraft [1].
Smart material based actuators and sensors are integrated with a host structure to enhance system
performance through reduced vibrations, active shape control, accurate pointing, etc. The
practical application of smart structures is increasing because of the commercial availability of
smart materials based actuators/sensors and developments in related technologies. The real time
sensing and actuation capabilities of smart structures provide a powerful means for active
vibration control. Active vibration control makes it possible to achieve unequalled performances
in areas where passive methods have shown their limits. Vibration reduction is essential for high-
precision machining, high accuracy inspection, human comfort, acoustics, and extended lifetime.
Piezoelectric materials have been used extensively as actuators and sensors in smart systems,
usually bonded to the surfaces of the structures.
The control algorithm forms a vital part of a smart structure. It analyzes sensor inputs and

commands the actuators to respond to the external (or internal) excitation in real time. The
conventional control systems using classical or state space techniques require a high fidelity model
of the plant (smart structure). The plant models, generally based on finite element analysis or
experimental identification, are very difficult to obtain for complex structures. The complex smart
structures, such as deployable space telescope and morphing aircraft, need to employ a large
number of distributed sensors and actuators. Such systems are likely to exhibit non-linearity and
variations with time. Adaptive control systems are suitable for the challenges presented by these
complex systems. The basic idea in adaptive control is to estimate the plant parameters based on
the measured signals and calculate the control input using the estimation [2]. Adaptive control can
maintain consistent performance of a system in the presence of uncertainty or unknown variation
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in plant parameters. Another advantage of adaptive control is that it requires limited a priori

knowledge of the plant to be controlled. A recent review of the various adaptive control
techniques is presented in Ref. [3].
Generalized predictive control (GPC) [4,5] provides a robust algorithm for challenging

adaptive control applications. The GPC algorithm uses a receding-horizon strategy
to predict plant output over several steps based on assumed future control inputs. It is known
to control non-minimum phase plants, open loop unstable plants and plants with variable or
unknown dead time. It is also robust with respect to modelling errors, over and under
parameterization, and sensor noise. It has been proved to be efficient, flexible, and
successful in many applications. Recently, an evaluation of modern adaptive multi-input
multi-output (MIMO) control techniques for active stability augmentation and vibration
control of tiltrotor aircraft showed GPC based MIMO active control to be highly
effective [6].
The adaptive generalized predictive control (AGPC) technique, which combines the advantages

of GPC and the adaptive plant model identification, is the subject of the present work. The corner
stone of this algorithm is the predictive plant model whose parameters are estimated from online
measurements. The parameter estimation method needs to be efficient for real time vibration
control of smart structures. Most of the researchers use a conventional recursive least squares
(RLS) [2] method to identify the plant model online. However, the conventional RLS algorithm
has a number of shortcomings, such as poor robustness especially when implemented on
computers with finite precision [7]. Also, the RLS algorithm is known to have optimal properties
when the parameters are time invariant, but it is unsuitable for tracking time-varying parameters
[8]. In order to improve the estimation method, Bierman [9] proposed UD factorization
algorithm, which has a much better numerical performance than RLS. However, the UD
factorization algorithm has not been as widely used as RLS because it appears to be more
complicated to interpret and implement.
Niu et al. [7] proposed an augmented UD identification (AUDI) algorithm by rearranging the

data vectors and augmenting the covariance matrix of Bierman’s UD factorization algorithm. The
AUDI permits simultaneous and recursive identification of the model parameters plus the loss
function for all orders from 1 to n at each time step with approximately the same calculation effort
as the nth order RLS and it has better numerical properties. The AUDI approach provides many
features that are particularly suitable for real time applications. It provides other information in
addition to the model parameters, such as model order and loss functions, parameter
identifiability, noise variance, and signal-to-noise ratio.
The AUDI method has been implemented by some researchers. Clarke [10] developed an

adaptive predictive control algorithm using the AUDI identification method (instead of RLS) and
showed its effectiveness through simulations. Maniar et al. [11] evaluated the performance of the
MIMO AGPC algorithm based on AUDI (with and without constraints) by experimental
application on a computer-interfaced, pilot-scale process. However, no work has been reported
using AUDI based adaptive predictive control of smart structures. Unlike most of the process
control applications, smart structures have fast dynamics and, therefore, need efficient real time
application algorithms. The current effort is to implement this algorithm in real time and
investigate the experimental performance of the AUDI based AGPC in the vibration suppression
of smart structures.
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2. Adaptive generalized predictive control

The AGPC system can be described by the diagram as shown in Fig. 1. There are mainly four
parts in this system: the plant to be controlled, adaptive plant model identification (which is used
to adaptively predict the output of the plant), the desired plant output, and the performance index
optimization process. The AGPC algorithm operates in two modes, namely, adaptive prediction
and control. The adaptive prediction occurs between samples and the performance index
optimization algorithm minimizes a user specified performance index to calculate the next control
vector by using the predicted future output from the plant model.

2.1. Plant model description

Most single-input single-output plants, when considering operation around a particular
set-point and after linearization, can be described by the controlled auto-regressive moving
average model (CARMA). To model the non-stationary disturbance, such as random steps
occurring at random times and Brownian motion, the controlled auto-regressive integrated
moving average (CARIMA) model is more appropriate, which is given by [4]

Aðz�1ÞyðkÞ ¼ Bðz�1Þuðk � 1Þ þ
xðkÞ
D

; ð1Þ

where yðkÞ is the predicted plant output at time step k; uðk � 1Þ is the plant input at the time step
k � 1; xðkÞ is an uncorrelated random sequence, D is the differencing operator 1� z�1; and the
Aðz�1Þ; Bðz�1Þ are the polynomials in the backward shift operator z�1 as follows:

Aðz�1Þ ¼ 1þ a1z
�1 þ?þ ana

z�na ; Bðz�1Þ ¼ b0 þ b1z
�1 þ?þ bnb

z�nb : ð2; 3Þ

If we use the filtered signals from the plant input–output data

yf ðkÞ ¼ DyðkÞ; uf ðk � 1Þ ¼ Duðk � 1Þ; ð4; 5Þ

the plant model becomes

Aðz�1Þyf ðkÞ ¼ Bðz�1Þuf ðk � 1Þ þ xðkÞ ð6Þ
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or

yf ðkÞ þ a1yf ðk � 1Þ þ?þ ana
yf ðk � naÞ

¼ b1uf ðk � 1Þ þ?þ bnb
uf ðk � nbÞ þ xðkÞ: ð7Þ

To simplify notation, yðkÞ; uðkÞ are used instead of yf ðkÞ; uf ðkÞ for the rest of this paper, and
#yðkÞ is used to denote prediction. Thus, the resulting overall plant model with one-step-ahead
prediction is given by

#yðkÞ þ a1yðk � 1Þ þ?þ ana
yðk � naÞ

¼ b1uðk � 1Þ þ?þ bnb
uðk � nbÞ þ xðkÞ: ð8Þ

Defining the parameter and data (regressor) vectors as

y ¼ ½a1; a2;y; an; b1; b2;y; bn�T; ð9Þ

hðkÞ ¼ ½�yðk � 1Þ;�yðk � 2Þ;y;�yðk � nÞ; uðk � 1Þ; uðk � 2Þ;y; uðk � nÞ�T; ð10Þ

the above model can be rewritten as

#yðkÞ ¼ hTðkÞyþ xðkÞ: ð11Þ

An estimate #yðkÞ of the true model parameter vector y is obtained recursively at each sampling
interval to predict plant response. The RLS algorithm [2] involves updating the covariance matrix
in a way that can cause poor numerical robustness. Factorization of the covariance matrix into
UDUT form, where U and D are a unit-upper-triangular matrix and a diagonal matrix
respectively, and then updating U and D matrices (instead of the covariance matrix) improves the
numerical performance [9].

2.2. Augmented UD identification

The AUDI method developed by Niu et al. [7,12] combines many nice properties and useful
features into a single, compact, and flexible algorithm and provides a natural choice for control-
oriented identification. Compared with the conventional RLS method, AUDI is simple in
concept, robust in numerical performance, and versatile in application. The basic idea of AUDI is
described briefly here.
With the one-step-ahead plant model described in the previous section and assuming the

maximum order of the model is n and letting na ¼ nb ¼ n; an augmented data vector is defined as

UnðkÞ ¼ ½�yðk � nÞ; uðk � nÞ;y;�yðk � 1Þ; uðk � 1Þ;�yðkÞ�T

¼ ½hTn ðkÞ � yðkÞ�T: ð12Þ

The parameter vector is also rearranged in an analogous manner:

#hnðkÞ ¼ ½an; bn;y; a2; b2; a1; b1�T: ð13Þ

A new covariance matrix, called augmented information matrix (AIM) is defined as

AnðkÞ ¼
Xk

j¼1

gk�jUnðjÞUT
n ðjÞ

" #�1

; ð14Þ
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where g is a forgetting factor. Decomposing AnðkÞ into the UDUT form gives

AnðkÞ ¼ UnðkÞDnðkÞUTn ðkÞ: ð15Þ

The above UnðkÞ and DnðkÞ matrices contain the parameter estimates and the loss functions for
all model orders from 1 to n [7]. The AUDI permits simultaneous and recursive identification of
the model parameters plus the loss function for all orders from 1 to n at each time step with
approximately the same calculation effort as nth order RLS. The augmented UD

identification approach provides many features that are particularly suitable for real time
applications. There is no need to use RLS algorithm after UD factorization as required by
Bierman’s method [9].

2.3. Performance index

The GPC methodology minimizes a weighted sum of quadratic functions representing the
predicted future errors and the control signal increments [4]:

JðN1;N2;Nu; lÞ ¼
XN2
j¼N1

ðyrðk þ jÞ � #yðk þ jÞÞ2 þ
XNu

j¼1

l Du2ðk þ j � 1Þ: ð16Þ

The term yrðk þ jÞ is the desired system output, #yðk þ jÞ is the predicted system output, Duðk þ
j � 1Þ is the control increment, N1 is the minimum costing horizon, N2 is the maximum costing
horizon, Nu is the control horizon, and l is a control-weighting factor. The GPC approach uses a
receding horizon strategy. At each time step k, the vector *u comprising fDuðkÞ;Duðk þ
1Þ; :::;Duðk þ Nu � 1Þg is calculated by minimizing the performance index J for the selected
values of the parameters fN1;N2;Nu; lg: The first element of vector *u is used and uðkÞ ¼
uðk � 1Þ þ DuðkÞ is sent as the control signal to the plant. The choice of the parameters in the
performance index has a large impact on the performance of the control system. The term N1 is set
to its usual value of 1 (with no loss of stability if the dead time of the plant is not exactly known).
The maximum costing horizon N2 is also selected to be 1 since the plant model provides one-step-
ahead prediction at each sample time. Multiple step-ahead prediction would require much larger
computational expense for the plant with fast dynamics. The control horizon is an important
design parameter since control increments are assumed to be zero after an interval Nu; that is,
Duðk þ j � 1Þ ¼ 0 for j > Nu: The value of Nu ¼ 1 is selected, which gives generally acceptable
control for open-loop stable plants.

2.4. Optimal control law

With the one-step-ahead plant model and the horizons equal to 1 (as discussed above), the
performance index can be rewritten as

J ¼ yrðk þ 1Þ � #yðk þ 1Þ½ �2þl uðkÞ � uðk � 1Þ½ �2: ð17Þ
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The minimization of the performance index gives the optimal control law as

uðkÞoptimal ¼ uðk � 1Þ �
#yðk þ 1Þ

l
@ #yðk þ 1Þ
@uðkÞ

¼ uðk � 1Þ �
#yðk þ 1Þ

l
b1; ð18Þ

where the reference value (or desired system output) yrðk þ 1Þ is taken as zero for the task of
vibration suppression. Since the system identification is done online with the presence of
disturbances acting on the system, an estimated disturbance model is reflected in the identified
system model and there is no need to model the disturbances separately [13]. The control
algorithm was implemented by writing a C-file S-function used in MATLAB/Simulink.

3. Experimental evaluation

3.1. Experimental set-up

The experimental set-up (Fig. 2) comprises a thin plate clamped rigidly at the base, which is free
to move up and down on linear bearings. An Electrodyne electromagnetic shaker (model AV-400)
generates the excitation input for the structure. The shaker is powered by Electrodyne model
N-300 single channel amplifier with a frequency range of 1.5Hz to 22 kHz. Two ACX PZT
actuators (QP10W) are bonded to the surface of the plate at the root, which is considered the best
location for controlling the fundamental bending mode [14]. The actuator input is limited to
7100V, which is well within the range of the maximum permissible voltage. Two Kistler
piezoceramic shear accelerometers (model 8774A50) are connected to a Kistler signal conditioner
that sends vibration information through a low-pass filter to the PC through AD channel. The
frequency range for the PZT actuators and the accelerometers are 0–20 and 1–10 kHz,
respectively. A 600MHz PC is used for the data acquisition, analysis and control. The signals
are converted from analog-to-digital and digital-to-analog using a Quanser 16-channel 12-bit
AD/DA board. Only the tip accelerometer is used in the current research and both actuators
receive the same voltage. Thus, we have a SISO (single-input single-output) control system. Fig. 3
shows the schematic diagram of the experimental set-up.
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3.2. Experimental results and discussions

The AGPC system is applied to the vibration suppression of a smart structure as described in
the previous section. The structure was excited by an impulse (generated through the shaker) and
the tip acceleration was measured to obtain the natural frequencies. Fig. 4 shows the natural
frequencies of the structure. The first two natural frequencies are 6.67 and 40.4Hz for the original
structure, 6.68 and 42.6Hz for the plate-added structure, 5.33 and 38.5Hz for the tip mass added
structure. These two modes are cantilever (bending) modes. The magnitude of the tip acceleration
is reduced due to the modifications, especially for the second mode with plate added which stiffens
the middle part of the structure as shown in Fig. 2(b). To assess the performance of the control
system, excitations at the first two natural frequencies and band-limited white noise (covering the
first two modes) were subsequently used. The parameter vector of the CARIMA plant model was
obtained in real time at the sampling frequency of 1000Hz starting from random small initial
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Fig. 3. Schematic diagram of the experimental set-up.

Fig. 4. First two natural frequencies of the experimental structure: ——, plate added; —J—, original structure; —
—,
tip mass added.

C. He, R. Jha / Journal of Sound and Vibration 274 (2004) 1065–1078 1071



values, which results in the adaptive prediction model. Since the CARIMA model integrates the
plant and the disturbance models, a relatively larger plant order (n ¼ 9) is used here to capture
plant dynamics adequately. The predicted (tip) acceleration was used to calculate the performance
index and to determine the best control signal that minimizes the performance index.
Figs. 5–7 show the uncontrolled and controlled responses of the plant for several excitations

generated by the shaker. The excitation voltage sent to the shaker amplifier and the resulting tip
accelerations are presented. Since the reduction of vibrations in the r.m.s sense has a very
significant effect on the fatigue life of a structure, the r.m.s. reductions were computed for a 10 s
time period. The figures show responses for smaller durations for the clarity of presentation. For
first and second mode sine wave excitations, r.m.s. reductions of 73% and 87%, respectively, were
achieved. Even for a band-limited white noise (0–50Hz) disturbance (Fig. 7), a large r.m.s.
reduction of 61% was observed.
To analyze the response in the frequency domain, a combination of first and second mode

frequencies was used. The experiment was repeated five times for both uncontrolled and
controlled cases to obtain the average values and the uncertainty in the results. The frequency
response (Fig. 8) shows an average vibration reductions of 13 and 19 dB at the first and second
natural frequencies, respectively. The maximum uncertainty of 71.3 dB was observed in these
measurements.
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Fig. 5. (a) First mode sine wave disturbance and (b) response to excitation at first natural frequency: ——,

uncontrolled; —
—, controlled.
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In many practical situations, the system dynamics or external excitations may change with time
for various reasons. A robust controller is therefore desired to maintain satisfactory performance
with perturbations in the system. To clearly show the robustness of the AGPC, the excitation
frequency was changed from first mode to second mode after 7 second (Fig. 9) and from second
mode to first mode in about 3 s (Fig. 10). The figures show that the controller adjusts its
parameters quickly and continues to perform very well even after such large changes in the
excitation frequency.
To test the experimental performance of adaptiveness, modifications to the original

structure (Fig. 2(a)) are used. One modification is adding a plate to the original structure, which
basically increases the stiffness of the structure (Fig. 2(b)). The other modification is adding a
mass near the tip (Fig. 2(c)), which decreases the natural frequencies. The controller was tested for
the modified structures using sine wave disturbances at the first two natural frequencies
(Figs. 11–14). For the plate-added case, first and second mode r.m.s. reductions of 72% and 79%,
respectively, were achieved. The r.m.s. vibrations at the first and second natural frequencies
decreased by 68% and 80%, respectively, for the tip mass added case. These vibration reductions
are similar to those for the original structure indicating that the developed controller is highly
adaptive.
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Fig. 6. (a) Second mode sine wave disturbance and (b) response to excitation at second natural frequency: ——,

uncontrolled; —
—, controlled.
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Fig. 7. (a) Band-limited white noise excitation (0–50Hz) and (b) response to band-limited white noise excitation: ——,

uncontrolled; —
—, controlled.

Fig. 8. Response to excitation at first and second natural frequencies: ——, uncontrolled; —%—, controlled.
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Fig. 9. (a) Excitation change from first to second natural frequency and (b) response to excitation change from first to

second natural frequency: ——, uncontrolled; —
—, controlled.

Fig. 10. (a) Excitation change from second to first natural frequency and (b) response to excitation change from second

to first natural frequency: ——, uncontrolled; —
—, controlled.
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Fig. 11. (a) First mode sine wave disturbance and (b) response to excitation at first natural frequency (plate added

structure): ——, uncontrolled; —
—, controlled.

Fig. 12. (a) Second mode sine wave disturbance and (b) response to excitation at second natural frequency (plate added

structure): ——, uncontrolled; —
—, controlled.
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Fig. 13. (a) First mode sine wave disturbance and (b) response to excitation at first natural frequency (tip mass added

structure): ——, uncontrolled; —
—, controlled.

Fig. 14. (a) Second mode sine wave disturbance and (b) response to excitation at second natural frequency (tip mass

added structure): ——, uncontrolled; —
—, controlled.
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4. Conclusions

This paper presents an experimental evaluation of AGPC for vibration suppression of smart
structures. The controller development follows the generalized predictive control methodology
with the plant represented by a controlled auto-regressive integrated moving average model. The
one-step-ahead plant model is obtained online using augmented UD identification in real time.
This efficient and robust technique is capable of coping with system uncertainty and time
variation. The performance index comprises a weighted sum of quadratic functions representing
predicted future errors and control signal increments.
Experimental evaluation of the control system is performed using a cantilevered plate with two

surface bonded piezoelectric patch actuators at the root and an accelerometer (sensor) at the tip.
The r.m.s. vibration reductions range from approximately 60% to 90% for white noise and sine
wave (at the first and second natural frequencies) disturbances. In the frequency domain,
13–19 dB reductions are achieved (with a maximum uncertainty of 71.3 dB) for sine wave
disturbances. A similar performance is obtained with the structure modified by attaching another
plate or a tip mass. The controller continues to perform well when the excitation frequency is
changed from first mode to second mode and vice versa. These results demonstrate very good
closed-loop performance and adaptiveness of the controller.
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